### Streamlining the Examination Process

A Toolkit for the Production of Examination Papers with Solutions

Elizabeth M Laws School of Computing, Science and Engineering University of Salford Salford M5 4WT United Kingdom e.m.laws@talktalk.net;

### Contents

- 1 Introduction
- 2 Methodology
- 3 Demonstration
- 4 Conclusions

### **Assessment Methods**

Examinations

Course work

Laboratory work

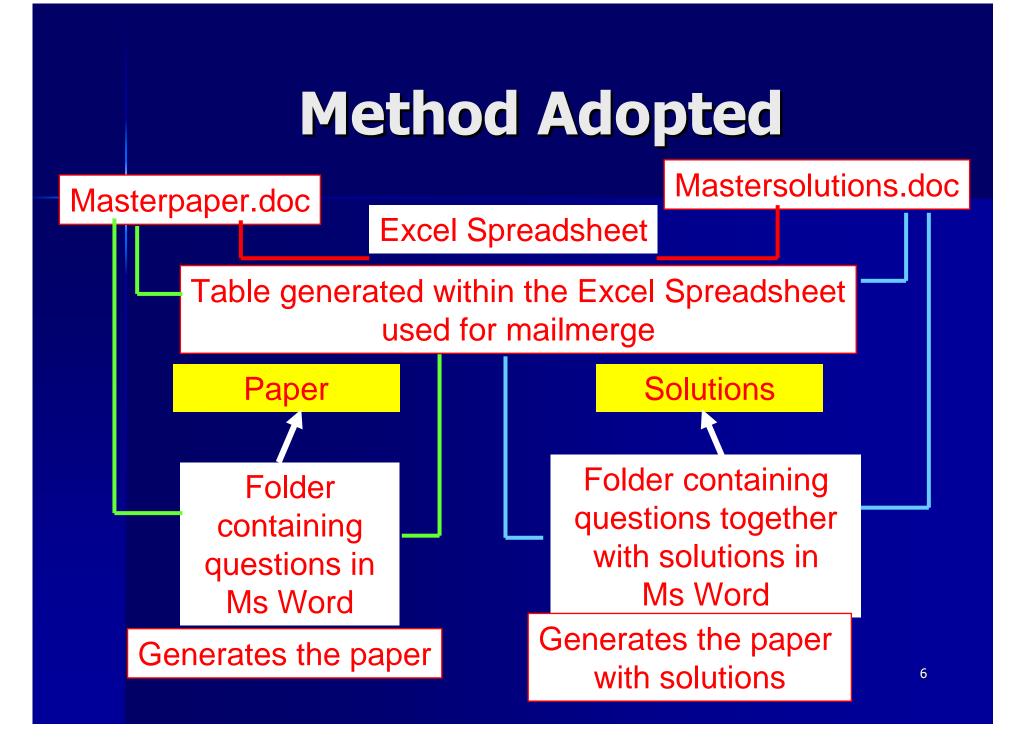
Group work

Assessment by examination carries the highest weight

## The Examination Paper Production Process

- Demanding in academic time
- 2 Rigourous administrative timetable to follow
- 3 Clashes with teaching commitments in semesters 1 and 2.
- 4 Issues of quality and rigour
- 5 Moderated by external examiner

# **Examination Papers requiring Solutions**


- 1 Necessary to complement the examination paper with detailed numerical solutions.
- 2 Under pressure of time it is easy to make mistakes or to introduce unrealistic of impractical values when choosing data at random.

Can the process be simplified embracing technology?

#### Minimum requirements

The ability to change the question data The ability to change the order that questions/topics appear in the paper.

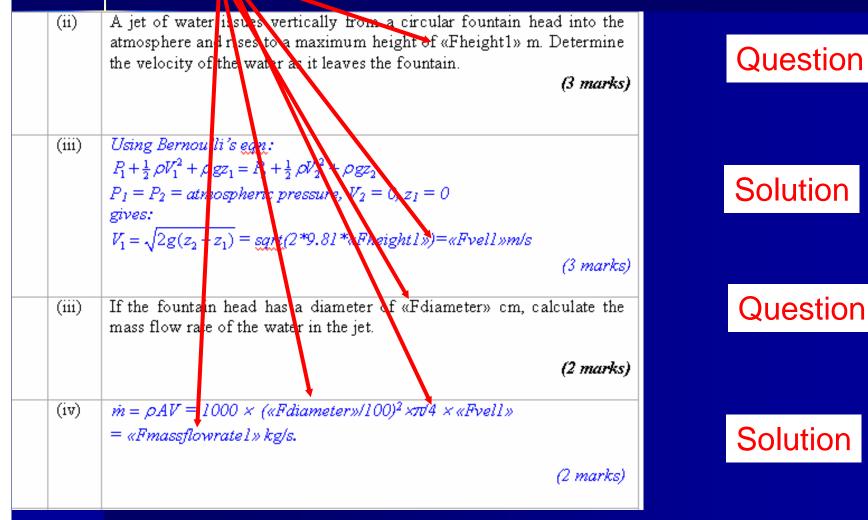
The ability to generate the solutions



# Paper and Solutions Folders

- Holds a set of questions labelled QuestionA, QuestionB, QuestionC.....etc
- 2 The question files in the solutions directory contain both the question and step by step solutions.
- 3 All the variables in questionA are prefixed by A, all those in Question B by B, all those in questionC by C....etc
- 4 Each question is linked to the Excel Spreadsheet through a worksheet labelled sheetA, sheetB, sheetC ....etc with corresponding tables, TableA, Table B, TableC ....etc.

### Question number supplied from the Excel spreadsheet


# ample Question F Paper Folder

|                              |                                                                                                                                                                                                                                                                                              | 73    |     |
|------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|
|                              | State the relationship between total pressure, static pressure, dynamic pressure and hydrostatic pressure. For a gas flow distinguish clearly between stagnation pressure and static pressure.                                                                                               | (1)   | «F» |
|                              | (4 marks)                                                                                                                                                                                                                                                                                    |       |     |
|                              | A jet of water issues vertically from a circular fountain head into the atmosphere and rises to a maximum height of «Fheight1» m. Determine the velocity of the water as it leaves the fountain.<br>(3 marks)                                                                                | (ii)  |     |
| The nu data is               | If the fountain head has a diameter of «Fdiameter» cm, calculate the mass flow rate of the water in the jet.<br>(2 marks)                                                                                                                                                                    | (iii) |     |
| as a m<br>enablir<br>data to | Due to system changes the mass flow rate of the water now changes to<br>«Fmassflowrate2», kg/s, determine the maximum height above the<br>fountain head the water now reaches and also determine the velocity of<br>the water at a height «Fheight2» m above the fountain head.<br>(5 marks) | (iv)  |     |
| easily                       | A flat plate is now placed horizontally into the jet of water, «Fheight2»                                                                                                                                                                                                                    | (v)   |     |
|                              | metres above the fountain head, as shown in figure. Sketch a suitable control volume and hence determine the vertical force which must be                                                                                                                                                    |       |     |

The merge fields come from TableF on SheetF of the Excel spreadsheet The numerical data is supplied as a merge field enabling the data to be easily changed.

### Merge fields come from TableF on SheetF of the Excel spreadsheet

# Question F utions Directory



#### Cell A5 topic SheetF of smailmerged with TableF Spreacheet TableF

| F              | Fheight1         | Fdiamete Fmas | sflovF                              | Fheight2 | Fvel1    | Farea    | Fmassflov | Fvel2    | Fmaxh    | Fvel3    | FForce   | Ftotalnumbe |
|----------------|------------------|---------------|-------------------------------------|----------|----------|----------|-----------|----------|----------|----------|----------|-------------|
| 6              | 20               | 35 1800       | 1                                   | 10       | 19.809   | 0.096    | 1905.858  | 18.709   | 17.840   | 12.402   | -22.324  | 13          |
|                | 0 20             |               | 1000                                | 10       | 19.00909 | 0.096211 | 1905.000  | 10.70003 | 17.00997 | 12.40243 | -22.3244 | 13          |
| MomentumandBe  | rnoullisequation |               |                                     |          |          |          |           |          |          |          |          |             |
| F              | 6                | min           | r                                   | max      | ndp      | nscale   |           |          |          |          |          |             |
| Fheight1       | 20.00            |               | 3                                   | 5        | 0        | 5        | ſ         |          | _        | _        |          |             |
| Fdiameter      | 35.00            |               | 6                                   | 7        | 0        | 5        |           | Dat      | a in     | forn     | natic    | n 🗌         |
| Fmassflowrate2 | 1800.00          |               | 15                                  | 25       | 0        | 100      |           |          |          |          |          |             |
| Fheight2       | 10.00            |               |                                     |          |          | F        |           |          |          |          |          |             |
| Fvel1          | 19.80908882      |               | Data variables for the question     |          |          |          |           |          |          |          |          |             |
| Farea          | 0.096211275      |               |                                     |          | a va     | ιαυ      | C2 1      |          |          | ues      |          |             |
| Fmassflowrate1 | 1905.857693      |               |                                     |          |          | -1       |           |          | ما ۲ م   |          |          |             |
| Fvel2          | 18.70882596      |               |                                     |          | aicui    | atec     | J Ste     | eps i    | n tn     | e so     | olutio   | on          |
| Fmaxh          | 17.83996784      |               |                                     |          |          |          |           |          |          |          |          |             |
| Fve13          | 12.40242593      |               |                                     | pro      | Sanc     | ced      | usin      | nd to    | rmu      | llae     | IINK     | ng the      |
| FForce         | -22.32436667     |               | produced using formulae linking the |          |          |          |           |          |          |          |          |             |
| Ftotalnumber   | 13               |               | named data variables                |          |          |          |           |          |          |          |          |             |
|                |                  |               |                                     |          |          |          |           |          |          |          |          |             |

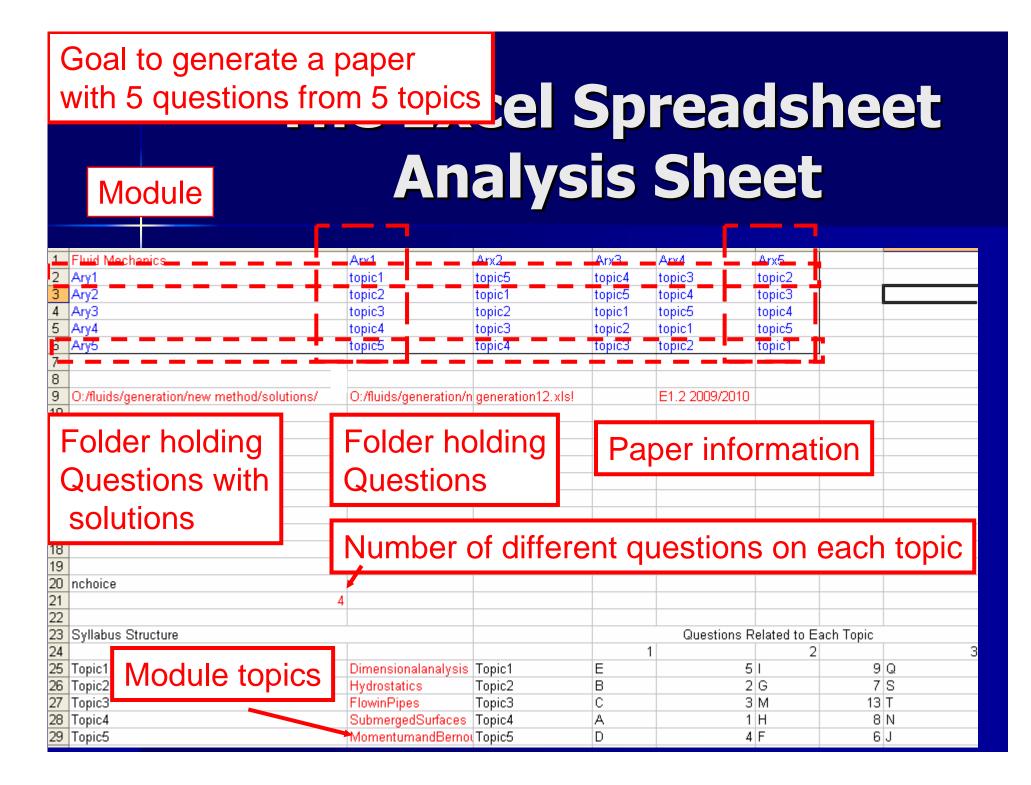
#### Total number of variables

Data generated using a random number generator ROUND(RAND()\*(max-min)+min,ndp)\*nscale

Output rounded to fix the number of decimal places

### The Paper Design

- 1 Starts with the topics on the module syllabus.
- 2 Contains a number of questions.


Example

Need to generate a paper containing 5 questions from a syllabus with 5 topics.

There are 25 different ways that the paper could be produced.

## The Analysis Sheet of the Excel Spreadsheet

- 1 Collates the information in cell A5 on sheetA, sheetB ...etc and sorts them into the syllabus topics.
- 2 Sorts out which of the questions relates to each topic.
- 3 Chooses a random mix of 5 questions with one question from each topic.
- 4 Makes a random choice of question layout to vary the position of the question within the paper i.e. one of the 25 possible arrangements.
- 5 Generates a table called Tablemaster which provides the merge fields needed to generate the paper and the paper with the solutions.
  - 6 Steps 1-5 are executed automatically.



### **Question Analysis**

| N  | 0                                               | Р        | Q        | R           | S           |               |
|----|-------------------------------------------------|----------|----------|-------------|-------------|---------------|
| 1  | SubmergedSurfaces                               | A        | Topic4   | A           | Topic4      |               |
| 2  | Phydrostatics                                   | В        | Topic2 🚤 | В           | Topic2      |               |
| 3  | 3 FlowinPipes                                   | С        | Topic3   | C           | Topic3      |               |
| 4  | MomentuinandBernoullisEquation                  | D        | Topic5   | D           | Topic5      |               |
| 5  | 5 Dimensionalanalysis                           | E        | Topic1   | E           | Topic1      |               |
| 6  | 6 Momentun and Bernoullise quation              | F        | Topic5   | F           | Topic5      |               |
| 7  | / Hydrostatics                                  | G        | Topic2   | G           | Topic2      |               |
| 8  | 3 Submergedsurfaces                             | Н        | Topic4   | Н           | Tonic4      | <u> </u>      |
| 9  | Dimensiona analysis                             |          | Topic1   |             |             |               |
| 10 | ) MomentumandBernoullisEquation                 | J        | Topic5   | <b>3</b> 01 | <b>KIEL</b> | ) INTO TOPICS |
| 11 | MomentumandBernoullisequation                   | K        | Topic5   | TX          | Topico      |               |
| 12 | 2 Momentuma dBernoullisequation                 | L        | Topic5   | L           | Topic5      |               |
| 13 | 3 FlowinPipes                                   | M        | Topic3   | M           | Topic3      |               |
| 14 | 1 SubmergedSurfaces                             | N        | Topic4   | N           | Topic4      |               |
|    | 5 Momentuman Bernoullisequation                 | 0        | Topic5   | 0           | Topic5      |               |
| 16 | Not a manufacture of a Diama culling a month of | <b>D</b> | Taniat   | n           | Taniat      |               |

### INFORMATION COLLECTED FROM CELL B5 OF WORKSHEETS SheetA, SheetB..... etc

|      | _ · · · · - · · · · · · · · · · · · · · | - |        | - |        |
|------|-----------------------------------------|---|--------|---|--------|
| 22   | Submergedsurfaces                       | V | Topic4 | V | Topic4 |
| 23   | Hydrostatics                            | W | Topic2 | W | Topic2 |
| - 24 | Flowinpipes                             | Х | Topic3 | Х | Topic3 |
|      |                                         |   |        |   |        |

# **Sorting the Questions**

#### Number of different questions on each topic

| 20 | nchoice            |                       |        |                                 |   |   |    |   |   |      |   |   |
|----|--------------------|-----------------------|--------|---------------------------------|---|---|----|---|---|------|---|---|
| 21 | 4                  |                       |        |                                 |   |   |    |   |   |      |   |   |
| 22 |                    |                       |        |                                 |   |   |    |   |   |      |   |   |
| 23 | Syllabus Structure | •                     |        | Questions Related to Each Topic |   |   |    |   |   |      |   |   |
| 24 |                    |                       |        | 1                               |   | 2 |    |   | 3 | Г    |   | 4 |
| 25 | Topic1             | Dimensionalanalysis   | Topic1 | E                               | 5 |   | 9  | Q |   | - 17 | R |   |
| 26 | Topic2             | Hydrostatics          | Topic2 | В                               | 2 | G | 7  | S |   | 19   | W |   |
| 27 |                    | FlowinPipes           | Торіс3 | С                               | 3 | M | 13 | Т |   | - 20 | Х |   |
| 28 | Topic4             | SubmergedSurfaces     | Topic4 | A                               | 1 | Н | 8  | N |   | - 14 | V |   |
| 29 | Topic5             | MomentumandBernoullis | Topic5 | D                               | 4 | F | 6  | J |   | 10   | K |   |
| 30 | -                  |                       | 1      |                                 | L |   |    |   |   |      |   | - |
| 31 |                    |                       |        |                                 |   |   |    |   |   |      |   |   |

### **QUESTIONS SORTED INTO TOPICS**

# Choosing the Question Arrangement

|                                       | Random             | n Choice of Qu         | Jestions on | Each To | pic |          |        |   |   |   |          |
|---------------------------------------|--------------------|------------------------|-------------|---------|-----|----------|--------|---|---|---|----------|
| Topic1                                | 1                  | R                      | R           | Q       | 1   | Q        | 1      | 1 |   |   |          |
| Topic2                                | S                  | W                      | S           | В       | В   | G        | W      | 2 |   |   |          |
| Topic3                                | Т                  | M                      | Т           | M       | M   | Т        | Т      | 3 |   |   |          |
| Topic4                                | $\vee$             | Н                      | Н           | A       | Н   | Н        | $\vee$ | 4 |   |   |          |
| Topic5                                | .1                 | .1                     | F           | K       | .1  | D        | F      | 5 |   |   |          |
|                                       | 1 Random Choice of | Questions for <i>i</i> | Arx1        |         |     | 2        |        |   |   |   |          |
| Arx1                                  | 1                  | 2                      | 3           | 4       | 5   | Arx2     | 1      | 2 | 3 | 4 |          |
| topic1                                | 1                  | R                      | R           | Q       |     | topic5   | J      | J | F | K | J        |
| topic2                                | S                  | W                      | S           | В       | В   | topic1   | 1      | R | R | Q | 1        |
| topic3                                | Т                  | M                      | Т           | M       | M   | topic2   | S      | W | S | В | В        |
| topic4                                | $\vee$             | Н                      | Н           | A       | Н   | topic3   | Т      | M | Т | M | M        |
| topio5                                | J                  | J                      | Г           | K       | J   | topic1   | ¥.     | H | H | Λ | <u> </u> |
| Selected Arrangempent                 |                    | Choice of Qu           | estions     |         |     |          |        |   |   |   |          |
| Ary2                                  |                    | 3                      |             |         |     |          |        |   |   |   |          |
| · · · · · · · · · · · · · · · · · · · | 1 topic2           | S                      | 1           | sheetS  | 17  | Question | າS     |   |   |   |          |
|                                       | 2 topic1           | R                      | 2           | sheetR  | 23  | Question | ۱R     |   |   |   |          |
|                                       | 3 topic5           | F                      | 3           | sheetF  | 13  | Question | ۱F     |   |   |   |          |
|                                       | 4 topic4           | Н                      | 4           | sheetH  | 28  | Question | ηΗ     |   |   |   |          |
|                                       | 5 topic3           | Т                      | 5           | sheetT  | 15  | Question | ۱T     |   |   |   |          |
|                                       |                    |                        |             |         |     |          |        |   |   |   |          |

### Demonstration

## Producing the Merge Table

| Question1 | S | Satm     | Sheight1  | Sheight2 | Sheight3 | Sheight4 | Srho1      | Srho2     | Srho3    | Satp     | Spre  |
|-----------|---|----------|-----------|----------|----------|----------|------------|-----------|----------|----------|-------|
| 17        | 1 | 752.39   | 41.8      | 432.6    | 253.2    | 189.6    | 1000       | 764.2     | 1000     | 100380.9 | 806   |
| Question2 | R | Rheightd | Rheightp  | Rdia     | Rlength  | rlength2 | Rff        | Red       | Rarea    | Rvel1    | RQ    |
| 40        | 2 | 5.6      | 1.57      | 1.23     | 779.8    | 338.6    | 0.02       | 0.03      | 1.188229 | 2.429353 | 2.8   |
| Question3 | F | Fheight1 | Fdiameter | Fmassflo | Fheight2 | Fvel1    | Farea      | Fmassflow | Fvel2    | Fmaxh    | Fvel3 |
| 53        | 3 | 15       | 30        | 2000     | 10       | 17.1552  | 0.07068583 | 1212.6278 | 28.29421 | 40.80339 | 24.   |
| Question4 | Н | Harea    | Hsg       | Hpa      | Hheight  | Hpressur | Hlength    | Hbreadth  | Hdepth2  | Hdepth3  | Hder  |
| 81        | 4 | 3.2      | 0.82      | 101.72   | 4.1      | 119      | 2          | 1.1       | 27       | 11.25    |       |
| Question5 | Т | Trho     | Tdia      | Tdynv    | Tlength  | ΤV       | Tkdynv     | Tmaxv     | Tre      | Tf       | TA    |
| 96        | 5 | 835      | 0.3       | 7.79     | 1.74     | 0.2      | 9.3293E-06 | 0.0621956 | 6431.322 | 0.035331 | 0.0   |
|           |   |          |           |          |          |          |            |           |          |          |       |

 Headerp
 filep1
 filep2
 filep3
 filep5
 Appendix Headers
 files1
 files2
 files3
 files4

 O:/fluids/generation/new
 O:/fluids/generation/new

#### **Tablemaster**

#### Files needed to generate paper

Files needed to generate paper together with the solutions

# Producing the Paper and paper with solutions

- 1 To generate the examination paper Mailmerge is executed using the Masterpaper.doc file with the merge fields coming from table Tablemaster on the Excel spreadsheet
- 2 To generate the examination paper with solutions Mailmerge is executed using the Mastersolutions.doc file with the merge fields coming from table Tablemaster on the Excel spreadsheet

## Master paper.doc Mastersolutions.doc

The merge fields are supplied from the Tablemaster table on the Analysis sheet of the Excel spreadsheet

| <pre>{includetext "{ MERGEFIELD "Headerp" }" }</pre>    |
|---------------------------------------------------------|
| <pre>{ includetext "{ MERGEFIELD "filep1" }" }</pre>    |
| <pre>{ includetext "{ MERGEFIELD "filep2" }" }</pre>    |
| { includetext "{ MERGEFIELD "filep3" }" }               |
| { includetext "{ MERGEFIELD "filep4" }" }               |
| <pre>{ includetext "{ MERGEFIELD "filep5" }" }</pre>    |
| <pre>{ includetext "{ MERGEFIELD "Appendixp" }" }</pre> |

{ includetext "{ MERGEFIELD "Headers" }" }
{ includetext "{ MERGEFIELD "files1" }" }
{ includetext "{ MERGEFIELD "files2" }" }
{ includetext "{ MERGEFIELD "files3" }" }
{ includetext "{ MERGEFIELD "files4" }" }
{ includetext "{ MERGEFIELD "files5" }" }

#### Masterpaper.doc

#### Mastersolutions.doc

Either word file is opened and the mailmerge executed to generate either the paper or the paper with the solutions

### Demonstration

# Excel Spreadsheet Paper Sheet

| Examination Paper Fluid MechanicsE1.2 2009/2010 |                           |   |         |          |          |          |            |          |          |          |           |          |       |
|-------------------------------------------------|---------------------------|---|---------|----------|----------|----------|------------|----------|----------|----------|-----------|----------|-------|
| Question1                                       | Dimensionalanalysis       | Q | Qdiam   | Qdiap    | QNm      | QUP      | Qrhom      | Qrhop    | Qdynvm   | Qdynvp   | Qpm       | QNp      | QPp   |
| Topic1                                          |                           | 1 | 41      | 185.2    | 76       | 47       | 1000       | 1.2      | 1.14     | 1.73     | 110       | 47.10417 | 59.1  |
|                                                 |                           |   |         |          |          |          |            |          |          |          |           |          |       |
| Question2                                       | MomentumandBernoullisEqua | D | dsg     | dmassflo | Dgaugep1 | Ddia1    | Ddia2      | dangle   | Darea1   | Darea2   | Ddensity  | Dvel1    | Dvel2 |
| Topic5                                          |                           | 2 | 0.81    | 2450     | 25       | 0.37     | 0.22       | 30       | 0.107521 | 0.038013 | 810       | 28.13117 | 79.5  |
|                                                 |                           |   |         |          |          |          |            |          |          |          |           |          |       |
| Question3                                       | SubmergedSurfaces         | N | Nlength | Nbreadth | Ndensity | Ndepth   | Ndistance  | Nangle   | NG       | Nhc      | Npressure | Narea    | NFor  |
| Topic4                                          |                           | 3 | 2.1     | 1.1      | 850      | 25       | 10         | 45       | 800      | 17.5     | 145.9238  | 2.31     | 337.  |
|                                                 |                           |   |         |          |          |          |            |          |          |          |           |          |       |
| Question4                                       | FlowinPipes               | M | Msg     | Mdynv    | Mdia     | Mvdot    | MnewV      | Mlengthp | Mangle   | Me       | Mdensity  | Marea    | ΜV    |
| Горіс З                                         |                           | 4 | 0.82    | 0.001    | 0.32     | 95       | 160        | 5        | 45       | 5        | 820       | 0.080425 | 1.18  |
|                                                 |                           |   |         |          |          |          |            |          |          |          |           |          |       |
| Question5                                       | Hydrostatics              | G | Gheight | Gsg      | Gforce   | Gareasma | Garealarge | Grho     | Gheight2 | Gmass    | Gatp      | Gatpbar  | Gpres |
| Topic2                                          |                           | 5 | 755.23  | 13.6     | 11300    | 135      | 645        | 780      | 16       | 4600     | 100759.8  | 1.007598 | 83    |

The Paper sheet in the Excel spreadsheet gives a record of the questions selected and the values selected for the question data.

## Conclusions

1

- A method of generating examination papers complete with solutions has been demonstrated harnessing features of Ms Word and Excel linked through mailmerge.
- 2 The method gives scope to free up the amount of academic time needed to produce both examination papers and the solutions. Examination paper production could become a non-academic function (though academic time would be needed to produce the question sets and lay out the solutions).
- 3 The method ensures that the paper produced gives full coverage of the module syllabus.
- 4 The method can be easily adapted to other subjects and modules

### **Attractive Features**

- 1 The questions selected can be automatically varied.
- 2 The numerical data in questions is automatically varied within the ranges specified.
- 3 The solutions to questions can be produced.
- 4 The same Excel spreadsheet can be used for every paper.
- 5 The method can be used by someone with only a knowledge of Ms Word.