Generating On-Line Assessments using MS Office for Use with Blackboard

Elizabeth M Laws School of Computing, Science and Engineering University of Salford Salford M5 4WT United Kinadom e.m.laws@talktalk.net

Contents

- Blackboard tests as part of the module assessment.
- 2 Second Phase of assessments using question pools.
- 3 Third phase using MS Office and mailmerge.
- 4 Fourth phase using Respondus with feedback.
- 5 Conclusions

1

Phase 1 Supervised Test Conditions

(10 points)

On- line as formed par (20% of the Tools

QUESUUI I		muluple choice	(in points)
	Question:	A perfect gas has a specific gas constant of 4kJ/kgK. If the gas is a pressure of 1bar and temperature of 527°C what is its specific volume?	
		C 3200 m ⁹ /kg C 2.11 m ⁹ /kg C 21.08 m ⁹ /kg C 32 m ³ /kg	
Question 2		Multiple Choice	(10 points)
	Question:	A perfect gas with a specific gas constant of 0.5kJ/kgK is at a temperature of 227°C and a pressure of 5bar. The specific volume of the gas is C 0.5m ³ /kg C 0.5x10 ⁻³ m ³ /kg C 0.227m ³ /kg C 0.227x10 ⁻³ m ⁹ /kg	
Question 3		Multiple Choice	(10 points)
	Question:	A perfect gas has a molecular weight of 28 and a ratio of specific heats of 1.4. If the Universal gas constant is Ro then cp is: C Ro/12 C Ro/8 C Ro/9 C 200-000	

All student

Question:

Question 1

COURSES > AEJ01001 Announcements Course Informati Staff Informat **Course Document** Assignments Books Communication Virtual Classro Discussion Board Groups External Links Tools Resources Course Map Control Panel

tank. The tank is partitioned as shown in the figure with the section of the tank linked to gauge A containing mercury, (specific gravity 13.6), to a depth of 1m whilst the remainder of the tank contains water, (specific gravity 1.0), to a depth of hcm above the mercury. Above the water is a layer of air where the pressure is 2 bar gauge.

Two pressure gauges are used to measure the inlet and outlet pressures to a

Resources Course Map Control Panel

COURSES > AEF01001 Announcements Course Information

Gauge A reads 350kPa

Multiple Choice

The value of h in cm is:

nditions.

emester 2 evel 1 Fluid Mechanics

Phase 2 Assessments Rolled out to other Modules

The on-line assessments were rolled out to other modules:

Semester 1

Semester 2

Thermodynamics E1.1 Thermodynamics S1.1 Aerofluid Mechanics E2.1 Aerofluid Mechanics S2.1 Fluid Mechanics E1.2 Fluid Mechanics S1.2 Energy and Power Systems L1.2 Power and Energy S0.2

Physically impossible to supervise the tests as the demand on time and physical resources available was too great. Students had to take the tests unsupervised.

Phase 2 Arrangement for Assessments

In each module the questions for the assessments came from a question pool with each student getting a random mix of questions from the pool.

Students in each module were divided into groups with each group getting a different set of questions from the pool in random order.

All questions used were of the multiple choice type.

Outcomes

Some students complained they had had harder questions than their peers.

Some students answered by guesswork The tests were difficult to adminstrate

Phase 3

Overcoming the Problems and Using Ms Office

A bank of questions was used such that all students answered the same basic question set but the numerical data within the questions presented to each student was different. (Multiple choice, numerical and also multiple answer type questions were used).

To minimise the chance of any students getting questions with the same numerical data 120 versions of each question were produced.

Cleary to do this manually would have been almost impossible.

The Method Adopted

Ms Word was used to generate the questions with the data and answers appearing as merge fields.

Ms Excel was used to generate the question data using a random number generator and the answers.

Mailmerge was used to import the data and answers from Excel into the question word file. Executing the mailmerge produced the required number of versions of each question.

Example of Word File used for a

During an engine test fuel with a calorific value of «acv» kJ/kg is burned at a rate of «amf»kg/s and the engine operates with a cycle officien by or anti-station and the engine at during the ON. cycle passes to cooling water ($c_p = 4196 J/kgk$). If the temperature rise of the cooling water is «Adt» °C then when steady flow conditions have been achieved the mass flow rate of the cooling water is?

The merge field data came from the Excel spreadsheet through mailmerge

The position of the correct answer was varied.

Executing the mailmerge would result in 30 pages each containing 4 questions

a calorific value of «dcv» kJ/ko is	Ł
th a cycle efficiency of «dN»%. Tł	n
6 J/kgK). If the temperature rise∍	0
ons have been achieved the mas	s

«Dwr1» kg/s «Dwr2» ką/s «Dwr3» kq/s «dans» kɑ/s correct

«Aans» kɑ/s correct «Awr1» ka/s «Awr2» kq/s «Awr3» kq/s

During an engine test fuel with a calorific value of «bcv» kJ/kg is burned at a rate of wbmf» kg/s and the engine operates with a cycle efficiency of «bN» %. The heat lost during the cγcle passes to cooling water (c_o = 4196 J/kgK) . If the temperature rise of the cooling water is $m (sbdt) s^{\circ}C$ then when steady flow conditions have been achieved the mass flow rate of the cooling water is?

a)	«Bwr1» kq/s		
)	«Bans» kq/s	correct	
C)	«Bwr2» kg/s		
d)	«Bwr3» kg∕s		

During an engine test fuel with a calorific value of «ccv» kJ/kg is burned at a rate of «cmf» kg/s and the engine operates with a cycle efficiency of «cN»%. The heat lost during the cycle passes to cooling water (c_o = 4196 J/kgK) . If the temperature rise of the cooling water is «cdt» ⁶C then when steady flow conditions have been achieved the mass flow rate of the cooling water is?

a) 2)	«Cwr1» kg/s «Cwr2» kg/s		
)	«cans» kɑ/s	correct	
4)	«Cwr3» kg/s		

burned at a rate of During an engine test fuel with «dmf» kg/s and the engine operates wi ie heat lost during the cycle passes to cooling water ($c_0 = 419$ of the cooling water is «ddt» °C then when steady flow conditi s flow rate of the cooling water is?

8

Number of versions of the question to be generated

Excel Spreadsheet (Data2)

Minimum value, Maximum value number of decimal places, Scale factor for variables

		В	C	D	E	F	-	G	Н		J	K	L	M	N	0	
1	Nations	Nchoices	amin	amax	andp	ascf		viiin	vmax	vndp	vscf	hmin	hmax	hndp	hscf	knymin	km
2	120	4	0.1	0.3	2		1	2.3	6.7	1	1		3 10		0	1 4.4	4
3	а	٧	h	knv	sg				~								
4	0.28	2.7	6	5.917	0.81		- N	lames	ot va	riable	s usec	i in q	uestior	า 📘			
5	0.24	4.2	4	6.06	0.89							•					
6	0.12	5.4	7	5.804	0.72												
7	0.21	5.1	9	4.595	0.74												
8	0.22	5.7	3	4.736	0.71												
9	0.23	6.3	4	8.238	0.83			ata (nala	Ilata	d lie	ina t	tha fr	۲m	ula:		
10	0.27	5.9	6	5.378	0.74			ala	Jaju	Παισ	u us	ing i			ula.		
11	0.11	2.9	9	7.062	0.77												
12	0.25	5.1	9	6.331	0.89												
13	0.17	5	6	5.106	0.82						ا ماد ا		· ·	\	· · ·	`	
14	0.25	6	8	4.824	0.8		R	UUNI)((RA	AND())*(ma	x-mi	n)+mII	n)*s	ct,ndp		
15	0.15	6	7	4.998	0.85					V V			/			/	
16	0.23	3.6	7	8.397	0.77												
17	0.21	4.4	10	6.072	0.8	L											_
18	0.16	2.8	6	4.703	0.81												
19	0.25	5.6	4	5.877	0.82												
20	0.26	4.2	10	7.165	0.76												
21	0.24	3.8	10	4.6	0.8												
22	0.1	4.5	6	8.079	0.81												
23	0.13	6	8	5.512	0.77												
24	0.14	6.2	6	5.875	0.88												
25	0.11	4.3	6	6.118	0.7			0									
26	0.15	6.2	9	7.16	0.83			Ger	nera	tea	Dat	а					
27	0.12	5.3	10	5.045	0.72												
28	0.26	6.5	10	5.424	0.86												
29	0.16	4.7	7	7.946	0.79												
30	0.17	6	8	5.653	0.85												
31	0.27	3	5	5.363	0.87												
32	Q.17	6.4	9	5.23	0.77												×
			1.2 (O. 4	and the second							1.4						

Excel Spreadsheet (Output)

A	В	C	D	E	F	G	H	
асу	amf	aN	adt	а	aans	awr1	awr2	awrS
43805	0.08	62	35	0	9.067629	46 80381	102,9911	10.29911
44328	0.06	66	27	0	7.981951	13.93797	71 80166	7,190166
43867	0.08	74	33	0	6.589491	20.21575	71.02832	7 10202-4
44279	0.05	58	23	0	9.635046	10.33353	74.82899	7.482899
44102	0.06	65	30	0	7.35734	13.52165	72.80891	7.280891
44206	0.07	65	30	0	8.603805	15.81246	85.14404	8.514404
44438	0.08	63	29	0	10.80968	17.66554	103.75	10.375
44480	0.06	72	27	0	6.595911	15.2572	59.33354	5.933354
44458	0.07	72	28	0	7.41673	17.73218	68.95847	6.895847
43813	0.08	74	28	0	7.756625	20.5261	72.11871	7.211871
43967	0.08	67	20	0	13.83137	19.15871	94.36379	9.436379
44294	0.08	70	24	0	10.55624	19.89398	85.25992	8.525992
44440	0.07	56	35	0	9.320114	13.47294	105.8588	10.58588
44353	0.08	63	33	0	9.481243	17.40138	102.1986	10.21986
43914	0.06	65	25	0	8.791173	13.68981	73.71434	7.371434
44363	0.08	59	20	0	17.33921	17.02306	118.2958	11.82958
44256	0.06	68	24	0	8.43775	14.48175	68.14942	6.814942
43928	0.06	71	27	0	6.746701	14.85858	60.68996	6.068996
44192	0.06	61	34	0	7.24845	12.54986	80.23678	8.023678
44154	0.08	74	23	0	9.516343	21.0351	73.9071	7.39071
44211	0.06	69	22	0	8.908101	14.77925	66.39953	6.639953
44358	0.06	65	25	0	8.880057	13.82822	74.45964	7.445964
44148	0.08	56	19	0	19.49237	16.13421	126.7688	12.67688
43814	0.08	66	24	0	11.8341	18.55392	95.58079	9.558079
43839	0.08	70	23	0	10.90206	19.75611	84.66905	8.466905
44105	0.08	65	27	0	10.9005	18.21031	98.05552	9.805552
44120	0.06	65	18	0	12.26724	14.08471	75.84073	7.584073
44118	0.07	59	23	0	13.12002	14.66286	101.8944	10.18944
44393	0.07	61	33	0	8.752411	14.75614	94.3425	9.43425
44041	0.07	56	16	0	20.2047	14.22933	111.8019	11.18019
43999	0.06	58	20	0	13.21228	12.44792	90.14009	9.014009

Correct and incorrect answers generated using visual basic modules in Excel

The same Excel spreadsheet could be used for all questions only the VB modules need changing

The ouput sheet was copied to the output2 sheet with rows in banks of four

Excel Spreadsheet (Output2)

асу	amf	aN	adt	а	aans	awr1	awr2	awr3	bev	bmf	bN	bdt	b	bans
43805	0.08	62	35	Ω	9 068	16 804	102 991	10.299	44328	<u> </u>	66	27	0	7 982
44102	0.06	65	30	U	7.357	13.522	72.809	7.281	44206	0.07	65	30	U	8.604
44458	0.07	72	28	0	7.417	17.732	68.958	6.896	43813	0.08	74	28	0	7.757
44440	0.07	56	35	0	9.320	13.473	105.859	10.586	44353	0.08	63	33	0	9.481
44256	0.06	68	24	0	8.438	14.482	68.149	6.815	43928	0.06	71	27	0	6.747
44211	0.06	69	22	0	8.908	14.779	66.400	6.640	44358	0.06	65	25	0	8.880
43839	0.08	70	23	0	10.902	19.756	84.669	8.467	44105	0.08	65	27	0	10.901
44393	0.07	61	33	0	8.752	14.756	94.343	9.434	44041	0.07	56	16	0	20.205
44481	0.05	69	33	0	4.979	11.946	53.671	5.367	44482	0.06	74	25	0	6.615
43957	0.06	73	19	0	8.932	15.706	58.090	5.809	43847	0.07	58	22	0	13.965
44412	0.05	58	18	0	12.348	10.543	76.343	7.634	44003	0.06	69	33	0	5.911
44380	0.05	72	25	0	5.923	12.771	49.664	4.966	44050	0.07	75	25	0	7.349
43989	0.06	60	31	0	8.116	12.409	82.724	8.272	44243	0.06	73	30	0	5.694
43993	0.06	68	24	0	8.388	1								441
43865	0.07	58	32	0	9.605			tnut2	cnrc	ade	hoot	form	hor	31
44493	0.07	60	32	0	9.278	1		ipuiz	Spic	Juus			icu	25
44395	0.06	63	28	0	8.389	1 th	h tob		ad fa	r tha	mo	ilmor	a o o	49
44333	0.05	69	30	0	5.459		e lau	16 U2	euio		; 111a	IIIIei	ye	27
44424	0.06	64	22	0	10.395	13.774	77.481	7.748	44200	0.07	74	33	U	5.810
44110	0.06	70	23	0	8.227	14.909	63.894	6.389	43921	0.06	71	30	0	6.071
43953	0.08	60	27	0	12.41									84
44127	0.05	64	24	0	7.887	l he r	nera	ed w	ord d	OCUI	men	t was	S	93
44038	0.05	66	30	0	5.947			••••	0.0.0					86
43903	0.08	73	29	0	7.793	save	d ac	a tyt	file f	or di	rect	unlo	ad to	054
43826	0.08	72	27	0	8.665	Juvo						upio		555
43835	0.08	69	50	0	5.182	امما	choor	. d						98
43973	0.05	70	41	0	3.834	DIdur	Judi	u						20
44329	0.07	67	50	0	4.881	15.333	75.520	7.552	44467	0.05	68	45	U	3.768
44049	0.08	64	38	0	7.956	17.274	97.168	9.717	44117	0.07	65	42	0	6.133
10051	0.07	70			1.055	10.000	01.500	0.450	11000	0.05	05	47		0.000

Problem 1 Mailmerge from Excel to Word

During an engine test fuel with a calorific value of
 44041.688470422065 kJ/kg is burned at a rate of 5.9504822506916556E 2kg/s and the engine operates with a cycle efficiency of
 Solution
 Necessary to use the Excel command fixed to fix the
 of
 number of decimal places

a) 0.91799822948919507 kg/s correct

- b) FIXED(variable, ndp,1) ^{3/s}
- c) 9.5472405038004418 kg/s
- d) 0.95472405038004415 kg/s

How to upload to Blackboard? Batch Uploading	The merged Word file was saved in the form web paged filtered.
$\begin{array}{llllllllllllllllllllllllllllllllllll$	A Perl program processed the merged .htm file and generated a .txt file
cycle passes to cooling we give27. c_{c} then when steady fileDuring an engine test fuelwater is?at a rate of 0.08 kg/s and the ena) \rightarrow 13.938 kg/sThe heat lost during the cycle pb) \rightarrow 7.982 kg/s \rightarrow coc) \rightarrow 71.802 kg/sthe temperature rise of the coold) \rightarrow 7.180 kg/sconditions have been achieved th13. \rightarrow During an engine to passes to cooling water (c cooling	with a calorific value of 43805 kJ/kg is burned gine operates with a cycle efficiency of 52%. asses to cooling water (cp = 4195 J/kgK) . If ing water is 35 oC then when steady flow e mass flow rate of the cooling water is? .804 kg/s incorrect 102.991 kg/s .tXt correct
is?¶ ¶ a) → 20.216·kg/s¶ b) → 71.028·kg/s¶ c) → 6.589·kg/s → correct¶ d) → 7.103·kg/s¶	Formatting lost through .txt upload
	Add Question Here
Question 1 🗸 Multiple Choice 10 points	Modify Remove
Question During an engine test fuel with a calorific value of 43805 kJ/kg is efficiency of 62%. The heat lost during the cycle passes to cooling water (c oC then when steady flow conditions have been achieved the mass flow rate Answer	burned at a rate of 0.08kg/s and the engine operates with a cycle p = 4196 J/kgK) . If the temperature rise of the cooling water is 35 e of the cooling water is?
102.991 kg/s 10.299 kg/s	

1. Atwi ψ=A(x²-y²)∙ resultant ve	o-dimensional flow is described by +Bxy, where A and B are constant elocity at the point («ax»,«ay») is g	/ a stream function,ψ, given by ts. If A=«aA» and B=«aB» ^{1.} A two-dimensional given by? Ψ=A(x²-y²)+Bxy, where A velocity at the point (4.8,7	flow is described by a stream function, ψ , given by and B are constants. If A=1 and B=4 the resultant 7.7) is given by?
a) «Aar b) «Awn c) «Awn d) «Awn	ns» m/s correct r1» m/s r2» m/s r3» m/s	a) 40.578 m/s c b) 74.823 m/s c) 73.154 m/s d) 41.580 m/s	orrect Ms Word
2. Atwi u = A(x ² -y ²) resultant ve a) «Bwi b) «Bwi c) «Bwi d) «Bar d) «Bar 3. Atwi u = A(x ² -y ²) resultant ve	o-dimensional flow is described by +Bxy, wher MC A two-di: elocity at the?=A(x2-y2)+Bxy velocity at th r1» m/s incorrect r2» m/s r3» m/s ns» m/s correct o-dimensional flow is described by +Bxy where A and B are constant elocity at the point («cx» «cv») is c	A stream function w given by mensional flow is described by , where A and B are constants. e point (4.8,7.7) is given by? t 73.154 m/s incorrect 41. y a stream function, ψ, given by ts. If A=«cA» and B=«cB» the given by?	a stream function,?, given by If A=1 and B=4 the resultant 40.578 m/s correct 7 580 m/s incorrect .txt
a) <u>~</u> Cw	r1. mie		
c) Quest	ion 1 👻 Multiple Choice	10 points	Modify Remove
d)	Question A two-dimension B=4 the resultant velocity a	al flow is described by a stream func <u>tion,?, give</u> n by <u>?</u> at the point (4.8,7.7) is given by?	P=A(x2-y2)+Bxy, where A and B are constants. If A=1 and
	Answer	✓ 40.578 m/s 74.823 m/s 73.154 m/s 41.580 m/s	Blackboard

Problem 2 Need to Retain Formatting and Symbols

Ms Word and Excel used as previously

The Perl program was modified to edit the merged word file, strip out all html other than superscript, subscript and symbols and replace the question number with the question type required for Blackboard (MC, MA, NUM)

The Perl program again generated an output file with an extension .txt which could be directly uploaded to Blackboard now retaining symbols and formatting.

Example

MC A two-dimensional flow is described by a stream function,?, given by ?=A(x2-y2)+Bxy, where A and B are constants. If A=1 and B=4 the resultant velocity at the point (4.8,7.7) is given by? 40.578 m/s correct Before m/s incorrect 73.154 m/s incorrect 41.580 m/s incorrect

MC. A two-dimensional flow is described by a stream function, Cfont face="symbol">y , given by <font</pre> face="symbol">y =A(x²-y²)+Bxy , where A and B are constants. If A=1 and B=4 the resultant velocity at the point (4.8 ,7.7) is given by? 40.578 m/s correct 74.823 m/∋ incorrect 73.154 m/s 41.580 incorrect, n√ s incorrect Aner

Question 4	✓ Multiple Choice		10 points		Modify	Remove
	Question A two-dimensi point (0,0) is 731.4 kPa	ional flow is described in polar co-c and the density of the fluid is 790 k	ordinates by a str ‹g/m ³ the pressu	eam function Ar ³ sin θ where A is a constant If A=2, t re at the point where r=2.14 m and θ =35 ⁰ is?	he pressure	e at the
	Answer	6	641kJ kPa			
		✓ E	611kPa			
		7	731kJ kPa	Blackboard		
		7	731 kPa			
					Add Oue	etion Here
						16

Individual students got the same questions in a random order and with different numerical data

Question 1	10 points Save
A fluid at an initial pressure of 1.42 bar and with a pressure of 11.78 bar during which the interna 1.57 then the heat transfer which occurs during	a volume of 0.75 m ³ is compressed by a reversible and polytropic non-flow process to I energy of the fluid increases by 2446 kJ If the polytropic index for the process is the compression is?
 244384.058kJ 2230.058kJ 	Student A
 3331.889kJ 2576.902kJ 	
Question 2	10 points Save
During an engine test fuel with a calorific value of efficiency of 58%. The heat lost during the cycli	
water is 26 °C then when steady flow condition:	2 Question 1 10 points Save 3 A closed rigid tank contains a hot fluid that is cooled whilst its contents are stirred by a paddle wheel. Initially, the internal energy of the fluid is 348kJ. During the cooling process, the fluid loses 89.6 kJ of heat, and the paddle wheel does 74.6 kJ of work on the fluid.
○ 16.221kg/s ○ 117.466kg/s	The final internal energy of the fluid in kJ, neglecting the energy stored in the paddle wheel, is?
○ 13.515kg/s	Ouestien 2
○ 11.747kg/s	During an engine test fuel with a calorific value of 44206 kJ/kg is burned at a rate of 0.07 kg/s and the engine operates with a cycle efficiency of 65.00%. The heat lost during the cycle passes to cooling water (c _p = 4196 J/kgK). If the temperature rise of the cooling
Question 3	water is 34 °C then when steady flow conditions have been achieved the mass flow rate of the cooling water is?
In a steam power plant the turbine generates the condenser is 177.0 kJ/kg. If 20.1kW of pow kg/s is?	 13.085kg/s 83.656kg/s 8.366kg/s 12.262kg/s
	Question 3 10 points Save
	A fluid at an initial pressure of 1.72 bar and with a volume of 0.79 m ³ is compressed by a reversible and polytropic non-flow process to a pressure of 11.65 bar during which the internal energy of the fluid increases by 1571 kJ If the polytropic index for the process is 1.48 then the heat transfer which occurs during the compression is? 1327.627 kJ 156856.627kJ 5129.228kJ 1741.070kJ

	SG-H300-10034-09: F	luid Mechanics E1.2 (08-09) - Elizabeth I	Laws (Instructor)	
Content Areas Module Information Resits Lectures Tutorials Laboratories Assessments	Course Web Pages Revision Books Web Links Lecture Documents Course Content	User Management List / Modify Users Create User Batch Create Users Assessment <u>Test Manager</u>	<u>Enroll User</u> <u>Remove Users from Course</u> <u>Manage Groups</u> <u>Gradebook Views</u>	
<u>Licker Questions</u> Course Tools Announcements Course Calendar Staff Information Fasks Send Email	<u>Manage Chalk Title</u> <u>Link Checker</u> Course Objectives <u>Configure Blog Tool</u> <u>Configure Wiki Tool</u>	Survey Manager Pool Manager Course Statistics Gradebook Help Support	Performance Dashboard Early Warning System Questionmark Contact System Administrator	
<u>cussion Board</u> I <u>laboration</u> jital Dropbox sssary Manager ssages	<u>Assess Wikis</u> <u>Manage Podcast</u> <u>Add Users by Role</u> <u>List All Users</u> <u>Blackboard Scholar®</u>	Pool Canvas Add, modify, and remove questions. Sel default options, such as feedback and in Add Upload Questions	lect a question type from the Add Question drop-down list mages, are available for question creation.	and click Go to add quest
		Name Poolname Description Instructions	action draw dawn list and slick Co	
FLUID MER P Add and Only poc	ECHANICS E1.2 (08-09) (SG-H300-10034-09) > CONTROL Pool Manager J import Pools of questions for use in asset of packages may be imported into the Poo Add Dool (2014) Import	PANEL > POOL MANAGER ssments. I Manager.		
	Add Pool 🖉 mpon			
🖉 FLa:	issessment1 a	Name	Date Last Modified March 1, 2009 <u>E</u> March 1, 2009 E	xport Modify xport Modify
FLas	issessment1 d issessment1 e		March 1, 2009 EX March 1, 2009 EX	xport Modify xport Modify
I FLas I FLas II FLas II FLas	issessment1h issessment1j issessmenti		March 1, 2009 E March 1, 2009 E March 1, 2009 F	xport Modify xport Modify xport Modify
 FLAG Fluid 	ussesssment1f ds2a		March 1, 2009 E	xport Modify
오 Fluid 오 Fluid 고 Fluid	ds2b ds2c ds2d		April 24, 2009 E	xport Modify xport Modify xport Modify
의 Fluid 기 Fluid	ds2e ds2f		April 24, 2009 E April 24, 2009 E April 27, 2009 E	xport Modify xport Modify

Test Manager

FLUID MECHANICS E1.2 (08-09) (SG-H300-(0034-09) > CONTROL PAI	NEL > TEST MANAGER > SEARCH POOLS AND ASSESSMENTS	
Search Pools and Assessments		
	SEARCH ADVANCED	
	Search the Pools and assessments below: -Tests- Assessment 1 Assessment 2 Resit Assessment 2 Test -Pools- FLassessment1a FLassessment1c	
	FLassessment1d	
	Question types	
	Multiple Choice Matching	
	Multiple Answer Ordering	
	Fill in the Blank Essay	
	Calculated Numeric Formula	
	☐ File Response ☐ Hot Spot	
	☐ Fill in Multiple ☐Jumbled Sentence	
	□ Opinion Scale/Likert □ Short Answer	
	Either/Or Quiz Bowl	
	 Use the point values currenty assigned to the mestions 	

Assessment Generation

🛄 As	sessments							
🙃 Ite	m 💼 Folder 🎒 External Link	📸 Course Link	🔊 Test	(Select:	_earning Unit		Go
	1 V Test Instructions Enabled: Statistics Tracking				Modi	fy Manage	Сору	Remove
	Open the assessment in Internet E Note that for those questions requi to 3 d.p.	Explorer rather than I ring you to supply a	Firefox. numerical answer you should type	your answer (without using any uni	s)			
	Elizabeth Laws							
	2 Assessment 1 Item is no longer available. It was l	last available on Ma	r 12, 2009 10:00 FM.			Modify	Manage	Remove
	3 • Assessment 2 Item is no longer available. It was I	last available on Ap	r 29, 2009 9:00 FM.			Modify	Manage	Remove
	4 <u>Resit Assessment 2</u> Item is no longer available. It was I Enabled: Adaptive Release	last available on Ma	y 8, 2009 8:00 PM.			Modify	Manage	Remove
								ОК

Using this method large question pools can be generated quickly and uploaded to Blackboard.

Tests can then be created using a random choice of questions from the pool.

Experience during the 2008-9 Academic Year

- 1 The method was used to generate 2 assessments for 8 different modules involving over 400 students with the largest cohort being 100.
- 2 Each assessment had 10 questions and the 2 Blackboard assessments accounted for 20% of the module mark.
- 3 Each question had 120 variants and the tests gave the questions variants in random order. The likelihood of any students getting the same question was low.
- 4 The students were spurred on to work by the assessments and overall they led to an improvement in overall performance.

Giving Feedback

- It is not possible to upload feedback directly into Blackboard.
- 2 Generic feedback could be given but the same feedback would need to be added to every question

tedious

3 To provide individual feedback the package Respondus has been used.

Respondus

Many question types can be deployed but not numerical

A column Create a Respondus archive file so that questions, media,

Feedback can be added to individual questions

Diagrams can be added to both questions and feedback

Questions can be uploaded through Repondus to Blackboard

Word File and Excel File

Question number

nl

ah

9

9

7

8

5

9

3

7

6

10

3

8

6

6

6

9

9

5

5

6

9

a٧

3.2

2.5

3.1

5.0

2.4

4.8

6.5

2.9

3.1

5.0

2.6

6.4

4.8

2.9

5.1

3.4

3.8

6.6

6.3

3.3

3.6

01

8

12

16

20

24

28

32

36

40

44

48

52

56

60

64

68

72

76

80

84

88

92

4 agn

aa

5 0.14

9 0.26

13 0.16

17 0.20

21 0.22

25 0.14

29 0.13

33 0.28

37 0.18

41 0.15

45 0.27

49 0.29

53 0.28

57 0.16

61 0.23

65 0.12

69 0.16

73 0.26

77 0.13

81 0.11

0.28

31

aknv

5.845

6.743

4.573

7.033

6.016

4.901

7.666

5.415

5.368

7.619

7.228

8.032

5.215

7.921

5.880

5.423

5.280

4.599

7.384

7.276

7.471

2

asg

0.90

0.78

0.72

0.87

0.71

0.86

0.73

0.77

0.89

0.74

0.73

0.88

0.79

0.75

0.82

0.82

0.86

120

«aqn». A flat plate, with cross-sectional area of «Aa» m² moves at a velocity of «Av» m/s close to a solid surface. The gap between the flat plate and the surface is of width «Ah» mm and the gap is filled with a fluid with kinematic viscosity «aknv» mm²/s and specific gravity «Asg». Above the plate is air. The force on the plate due to the fluid is?

*a) «aans» N

@Well done.

b) «Awr1» N

@ For a Newtonian fluid the shear stress, τ , is μx velocity gradient. Assuming a linear variation of velocity then the velocity gradient is «av»/(«ah»x10-3)/s.

The density of the fluid is «asg»x1000 kg/m³ and the dynamic viscosity is aans_ «akny»x10⁻⁶ x the fluid density (Pa.s). (Note that the kinematic viscosity has 0.524 been converted from mm² to m² (1 mm² = 10⁻⁶ m²). The force is then 0.205 calculated by evaluating τx plate area.

0.379 c) «Awr2» N

0.612 @ For a Newtonian fluid τ, is μx velocity gradient.. Assuming a linear 0.410 variation of velocity then the velocity gradient is «av»/(«ah»x10-) /s. The 0.495 density of the fluid is «asg»x1000 kg/m³ and the dynamic viscosity is 1.698 «aknv»x10⁻⁶ x the fluid density (Pa.s). (Note that the kinematic viscosity has 0.225 been converted from mm² to m² (1 mm² = 10^{-6} m²). The force is then 0.691 calculated by evaluating τx plate area.

0.507 d] «awr3» N

0.686 @ For a Newtonian fluid τ , is μx velocity gradient. Assuming a linear variation 1.527 of velocity then the velocity gradient is «av»/(«ah»x10-3) /s. The density of the 0.956 fluid is «asg»x1000 kg/m³ and the dynamic viscosity is «aknv»x10⁻⁶ x the fluid 0.965 density (Pa.s). (Note that the kinematic viscosity has been converted from 0.568 mm² to m² (1 mm² = 10⁻⁶ m²). The force is then calculated by evaluating τx

n 728 «bgn». A flat plate, with cross-sectional area of «Ba» m² moves at a velocity 1 984 of «Bv» m/s close to a solid surface. The gap between the flat plate and the $\int \frac{1}{10} \frac{4}{27}$ surface is of width «Bh» mm and the gap is filled with a fluid with kinematic n 283 viscosity «bknv» mm²/s and specific gravity «Bsg». Above the plate is air. The 0.250 force on the plate due to the fluid is?

0.85 85 0.16 2.6 8 5.651 o.cc4 a) «Bwr1» N F E 450 0.70 00 0 07 0.0

- 0.90 0.71
 - 0,405 plate area.
- 0.86
- 0.90 0.241

Including Feedback

Appearance in Internet Expl Changes made in Edit will no	Inter (other browsers may vary slightly). Go To Prev. Next 1 of 120 Modify Item Item Item Item Item Item	
Question 1	Mult. Choice	(1.00 points)
	Question: A flat plate, with cross-sectional area of 0.23 m ² moves of 3.8 m/s close to a solid surface. The gap between th and the surface is of width 8 mm and the gap is filled w	s at a velocity ne flat plate ith a fluid with
	plate is air. The force on the plate due to the fluid is?	os. Above the
	C 0.712 N	
	C 0.858 N	
	C 1.033 N	
	C 0.930 N	

Feedback

100.0% a. Well done.

- 0.0% b. For a Newtonian fluid the shear stress, τ , is μ x velocity gradient. Assuming a linear variation of velocity then the velocity gradient is 3.8/(8x10⁻³) /s. The density of the fluid is 0.83x1000 kg/m³ and the dynamic viscosity is 7.851x10⁻⁶ x the fluid density (Pa.s). (Note that the kinematic viscosity has been converted from mm² to m² (1 mm² = 10⁻⁶ m²). The force is then calculated by evaluating τ x plate area.
- 0.0% c. For a Newtonian fluid τ , is μ x velocity gradient. Assuming a linear variation of velocity then the velocity gradient is $3.8/(8x10^{-3})$ /s. The density of the fluid is 0.83x1000 kg/m³ and the dynamic viscosity is $7.851x10^{-6}$ x the fluid density (Pa.s). (Note that the kinematic viscosity has been converted from mm² to m² (1 mm² = 10^{-6} m²). The force is then calculated by evaluating τ x plate area.

0.0% d. For a Newtonian fluid τ , is μ x velocity gradient. Assuming a linear variation of velocity then the velocity

Imported Files in Repondus

Start Edit	Settings Preview Retrieval & Publish & Reports	Blackboard 6.3 - 8.x
Edit Questions	Multiple Choice ? 1. Title of Question	
Multiple Choice	2. Question Wording	
True and False		
Essay / Short Answer		
Matching		
Collection	3. Answers (PageDown moves to next answer) 🔄 General Feedback 📗 🥅 Feedback	
Urdering		
Fill in the Blank	A	
Multiple Answers		
Calculated	B	
More >		
Conv from Another File		
Copy from Another File		
	4. Select Correct Answer 5. Point Value 1.00	
	6 Add to End of List Insert into List Clear Form Preview	
Question List		Total Items: 120 Points: 120.0
# Title Format	Question Wording	
1 FL1a001 Mult. Cl	noice A flat plate, with cross-sectional area of 0.23 m ² moves at a velocity of 3.8 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 8 mm an 💳
2 FL1a002 Mult. Cl	noice 🚽 A flat plate, with cross-sectional area of 0.27 m ² moves at a velocity of 2.3 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 8 mm and
3 FL1a003 Mult. Cl	noice 🛛 A flat plate, with cross-sectional area of 0.29 m ² moves at a velocity of 3.2 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 7 mm and
4 FL1a004 Mult. Cl	noice A flat plate, with cross-sectional area of 0.30 m ² moves at a velocity of 2.3m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 10 mm as
5 FL1a005 Mult. Cl	noice A flat plate, with cross-sectional area of 0.11 m ² moves at a velocity of 4.5 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 3 mm and
6 FL1a006 Mult. Cl	noice A flat plate, with cross-sectional area of 0.15 m ² moves at a velocity of 5.9 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 9 mm and
7 FL1a007 Mult. Cl	noice A flat plate, with cross-sectional area of 0.22 m ² moves at a velocity of 3.6 m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 7 mm and
8 FL1a008 Mult. Cl	noice A flat plate, with cross-sectional area of 0.13 m ² moves at a velocity of 5.7m/s close to a solid s	urface. The gap between the flat plate and the surface is of width 6 mm and \checkmark

26

<u>Publishing to Blackboard</u> Retrieval & Reports Preview & Publish Edit

Preview &

Start

Publish to Blackboard 💡

Publish

Wizard

Settings

Preview

Publish to Blackboard

Update Settings

Print Options

Publish Wizard		
1. Choose Course to publish to		
ľ		
2. Create or Replace Exam/Su	rvey or Pool	
Exam/Survey		
Create new Exam	FLassessment1a	
C Replace existing Exam		6
Pool		
C Create new Pool	FLassessment1a	
C Replace existing Pool		
3. Additional options for Exam/	Survey	
🔽 Apply Random Blocks to	Exam	
🔽 Apply Settings to Exam		
🔽 Link Exam to Content Are	a and make available	

Blackboard 6.3 -

Publishing to Blackboard

Start Edit	Settings Preview & Publish &	etrieval Reports	Blackboard 6.3 - 8.x	
Preview & Publish Preview Publish to Blackboard	Publish to Blackboard ? Publish Wizard Use this option to publish server. You can send complete exam or surver	sh the currently open document to a Blackboard 6.3+ the document as either a questions pool or as a ey.		
Print Options	 Type of Publish - Local File, Single Course Publish to single course Batch Publish to multiple courses (only Save pool to local file for manual uplo Choose an existing server, or "add new se 	Start Edit Setting Preview & Publish to Black Publish Preview Publish to Blackboard Publish to Blackboard	Retrieval Reports Reports Section 1	Blackboard 6.3 - 8.x
	Settings: Server vie salford.ac Settings: Server vie salford.ac Server Port: 80 User: ams021	Print Options	rise to publish to aplace Exam/Survey or Pool av ew Exam Asseement 1cr existing Exam	
	3. Press [Next] to connect to server	Pool ← Create no ← Replace 3. Additional op ☞ Apply Ra ☞ Apply Se ☞ Link Exa	ew Pool Asseement 1cr existing Pool IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	
			Kack Next> Cancel Help	

Conclusions

- 1 Harnessing the use of Ms Office and mailmerge it is possible to generate large question pools for use with Blackboard easily and quickly.
- 2 For questions without feedback the Perl program and .txt upload gives the fastest solution.
- 3 For questions with feedback the Respondus package is the most convenient but currently unsuitable for numerical questions since a tolerance cannot be specified. This would be essential for questions requiring the use of a calculator.

Summary

The assessments generated were a fairer way of assessing large cohorts of students taking tests remotely.

The majority of students found the tests beneficial and worked enthusiastically to achieve good scores.

Because the assessments are marked automatically the pressure on time associated with marking is lifted.